How do you find the derivative of cos(1-2x)^2?

1 Answer
May 11, 2018

4(1-2x)sin(1-2x)^2

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"

rArrd/dx(cos(1-2x)^2)

=-sin(1-2x)^2xxd/dx((1-2x)^2)

=-sin(1-2x)^2xx2(1-2x)xxd/dx(1-2x)

=-sin(1-2x)^2xx2(1-2x)xx-2

=4(1-2x)sin(1-2x)^2