How do you find the derivative of arctan sqrt [ (1-x)/(1+x)]?

1 Answer
Aug 9, 2016

\ y' = - 1/(2 sqrt [(1-x^2)]

Explanation:

y = arctan sqrt [ (1-x)/(1+x)]

tan y = sqrt [ (1-x)/(1+x)]

tan^2 y = (1-x)/(1+x)

tan^2 y = 2/(1+x) - 1

differentiating each side

2 tan y sec^2 y\ y' = -2/(1+x)^2

tan y (tan^2 y + 1)\ y' = -1/(1+x)^2

sqrt [ (1-x)/(1+x)] ( (1-x)/(1+x) + 1)\ y' = -1/(1+x)^2

sqrt [ (1-x)/(1+x)] ( (2)/(1+x))\ y' = -1/(1+x)^2

\ y' = - 1/(1+x)^2 * sqrt [ (1+x)/(1-x)] * (1+x)/2

\ y' = - 1/(2 sqrt(1+x) * sqrt [(1-x)]

\ y' = - 1/(2 sqrt (1-x^2)