How do you find the derivative of (1)/((1-x^2)^(1/2))1(1x2)12?

1 Answer

Derivative of color(blue)(d/dx(1/(1-x^2)^(1/2))=x/(1-x^2)^(3/2))ddx(1(1x2)12)=x(1x2)32

Explanation:

Start with the given 1/(1-x^2)^(1/2)1(1x2)12

d/dx(1/(1-x^2)^(1/2))=d/dx(1-x^2)^(-1/2)ddx(1(1x2)12)=ddx(1x2)12

d/dx(1/(1-x^2)^(1/2))=(-1/2)(1-x^2)^(-1/2-1)*d/dx(1-x^2)ddx(1(1x2)12)=(12)(1x2)121ddx(1x2)

d/dx(1/(1-x^2)^(1/2))=(-1/2)(1-x^2)^(-3/2)*(0-2x)ddx(1(1x2)12)=(12)(1x2)32(02x)

d/dx(1/(1-x^2)^(1/2))=(-1/2)(1-x^2)^(-3/2)*(-2x)ddx(1(1x2)12)=(12)(1x2)32(2x)

d/dx(1/(1-x^2)^(1/2))=x/(1-x^2)^(3/2)ddx(1(1x2)12)=x(1x2)32

God bless....I hope the explanation is useful.