How do you find the derivative for (-7x^2+8)^8(3x^2+9)^10?

1 Answer

\frac{dy}{dx}=-4x(189x^2+132)(-7x^2+8)^7(3x^2+9)^9

Explanation:

Using product rule of differentiation as follows

\frac{d}{dx}(-7x^2+8)^8(3x^2+9)^10

=(-7x^2+8)^8\frac{d}{dx}(3x^2+9)^10+(3x^2+9)^10\frac{d}{dx}(-7x^2+8)^8

=(-7x^2+8)^8(10(3x^2+9)^9)\frac{d}{dx}(3x^2+9)+(3x^2+9)^10(8(-7x^2+8)^7)\frac{d}{dx}(-7x^2+8)

=10(-7x^2+8)^8(3x^2+9)^9(6x)+8(3x^2+9)^10(-7x^2+8)^7(-14x)

=4x(-7x^2+8)^7(3x^2+9)^9(15(-7x^2+8)-28(3x^2+9))

=4x(-7x^2+8)^7(3x^2+9)^9(-189x^2-132)

=-4x(189x^2+132)(-7x^2+8)^7(3x^2+9)^9