How do you find the derivative for #(-7x^2+8)^8(3x^2+9)^10#?

1 Answer

#\frac{dy}{dx}=-4x(189x^2+132)(-7x^2+8)^7(3x^2+9)^9#

Explanation:

Using product rule of differentiation as follows

#\frac{d}{dx}(-7x^2+8)^8(3x^2+9)^10#

#=(-7x^2+8)^8\frac{d}{dx}(3x^2+9)^10+(3x^2+9)^10\frac{d}{dx}(-7x^2+8)^8#

#=(-7x^2+8)^8(10(3x^2+9)^9)\frac{d}{dx}(3x^2+9)+(3x^2+9)^10(8(-7x^2+8)^7)\frac{d}{dx}(-7x^2+8)#

#=10(-7x^2+8)^8(3x^2+9)^9(6x)+8(3x^2+9)^10(-7x^2+8)^7\(-14x)#

#=4x(-7x^2+8)^7(3x^2+9)^9(15(-7x^2+8)-28(3x^2+9))#

#=4x(-7x^2+8)^7(3x^2+9)^9(-189x^2-132)#

#=-4x(189x^2+132)(-7x^2+8)^7(3x^2+9)^9#