How do you find the coordinates of the vertices, foci, and the equation of the asymptotes for the hyperbola y^2-3x^2+6y+6x-18=0?

1 Answer

Answer is below

Explanation:

Given equation of hyperbola:

y^2-3x^2+6y+6x-18=0

(y^2+6y+9)-3(x^2-2x+1)-9+3-18=0

(y+3)^2-3(x-1)^2=24

\frac{(y+3)^2}{24}-\frac{3(x-1)^2}{24}=1

\frac{(y+3)^2}{(2\sqrt6)^2}-\frac{(x-1)^2}{(2\sqrt2)^2}=1

The above vertical hyperbola: y^2/a^2-x^2/b^2=1 has

Center: (x-1=0, y+3=0)\equiv(1, -3)

Eccentricity: e=\sqrt{1+b^2/a^2}=\sqrt{1+8/24}=2/\sqrt3

The vertices: (x-1=0, y+3=\pma)\equiv(1, -3\pm2\sqrt6) &

(x-1=\pm b, y+3=0)\equiv(1\pm 2\sqrt2, -3)

Focii: (x-1=0, y+3=\pm ae)\equiv(1, -3\pm4\sqrt2)

Asymptotes: y=\pma/b x

y+3=\pm({2\sqrt6}/{2\sqrt2})(x-1)

y=-3\pm\sqrt3(x-1)