How do you find the antiderivative of int (arctan(sqrtx)) dx?

1 Answer
Nov 7, 2016

(x+1)arctan(sqrtx)-sqrtx+C

Explanation:

I=intarctan(sqrtx)dx

Integration by parts takes the form intudv=uv-intvdu. So, for intarctan(sqrtx)dx, we should let u=arctan(sqrtx) and dv=dx.

Differentiating u gives (du)/dx=1/(1+(sqrtx)^2)*d/dxsqrtx or du=1/(2sqrtx(1+x))dx. From dv=dx we integrate to show that v=x. Thus:

I=uv-intvdu

color(white)(I)=xarctan(sqrtx)-intx/(2sqrtx(1+x))dx

color(white)(I)=xarctan(sqrtx)-1/2intsqrtx/(1+x)dx

Letting t=sqrtx implies that t^2=x and furthermore, that 2tdt=dx through differentiating. Thus:

I=xarctan(sqrtx)-1/2intt/(1+t^2)(2tdt)

color(white)I=xarctan(sqrtx)-intt^2/(1+t^2)dt

color(white)I=xarctan(sqrtx)-int(1+t^2-1)/(1+t^2)dt

color(white)I=xarctan(sqrtx)-int(1+t^2)/(1+t^2)dt+int1/(1+t^2)dt

color(white)I=xarctan(sqrtx)-intdt+arctan(t)

color(white)I=xarctan(sqrtx)-t+arctan(t)

Since t=sqrtx:

I=xarctan(sqrtx)-sqrtx+arctan(sqrtx)

color(white)I=(x+1)arctan(sqrtx)-sqrtx+C