How do you find the antiderivative of int (arctan(sqrtx)) dx?
1 Answer
Explanation:
I=intarctan(sqrtx)dx
Integration by parts takes the form
Differentiating
I=uv-intvdu
color(white)(I)=xarctan(sqrtx)-intx/(2sqrtx(1+x))dx
color(white)(I)=xarctan(sqrtx)-1/2intsqrtx/(1+x)dx
Letting
I=xarctan(sqrtx)-1/2intt/(1+t^2)(2tdt)
color(white)I=xarctan(sqrtx)-intt^2/(1+t^2)dt
color(white)I=xarctan(sqrtx)-int(1+t^2-1)/(1+t^2)dt
color(white)I=xarctan(sqrtx)-int(1+t^2)/(1+t^2)dt+int1/(1+t^2)dt
color(white)I=xarctan(sqrtx)-intdt+arctan(t)
color(white)I=xarctan(sqrtx)-t+arctan(t)
Since
I=xarctan(sqrtx)-sqrtx+arctan(sqrtx)
color(white)I=(x+1)arctan(sqrtx)-sqrtx+C