How do you evaluate the integral int x"arcsec"(x^2)?

1 Answer
May 20, 2018

int x*arcsec(x^2)*dx

=1/2x^2*arcsec(x^2)-1/2ln(x^2+sqrt(x^4-1))+C

Explanation:

int x*arcsec(x^2)*dx

=1/2int 2x*arcsec(x^2)*dx

After using y=x^2 and 2x*dx=dy transforms, this integral became

1/2int arcsecy*dy

After using z=arcsecy, y=secz and dy=secz*tanz*dz transforms, it became

1/2int z*secz*tanz*dz

=1/2z*secz-1/2int secz*dz

=1/2z*secz-1/2int (secz*(secz+tanz)*dz)/(secz+tanz)

=1/2z*secz-1/2ln(secz+tanz)+C

For y=secz, tanz must be equal to sqrt(y^2-1). Thus,

1/2y*arcsecy-1/2ln(y+sqrt(y^2-1))+C

=1/2x^2*arcsec(x^2)-1/2ln(x^2+sqrt(x^4-1))+C