How do you evaluate the integral int x"arcsec"(x^2)? Calculus Techniques of Integration Integration by Parts 1 Answer Cem Sentin May 20, 2018 int x*arcsec(x^2)*dx =1/2x^2*arcsec(x^2)-1/2ln(x^2+sqrt(x^4-1))+C Explanation: int x*arcsec(x^2)*dx =1/2int 2x*arcsec(x^2)*dx After using y=x^2 and 2x*dx=dy transforms, this integral became 1/2int arcsecy*dy After using z=arcsecy, y=secz and dy=secz*tanz*dz transforms, it became 1/2int z*secz*tanz*dz =1/2z*secz-1/2int secz*dz =1/2z*secz-1/2int (secz*(secz+tanz)*dz)/(secz+tanz) =1/2z*secz-1/2ln(secz+tanz)+C For y=secz, tanz must be equal to sqrt(y^2-1). Thus, 1/2y*arcsecy-1/2ln(y+sqrt(y^2-1))+C =1/2x^2*arcsec(x^2)-1/2ln(x^2+sqrt(x^4-1))+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 2160 views around the world You can reuse this answer Creative Commons License