How do you evaluate the integral int x/(sqrt(x-1)-sqrtx)?
1 Answer
Explanation:
Multiply first by the conjugate of the denominator to simplify the integrand.
I=int(x(sqrt(x-1)+sqrtx))/((sqrt(x-1)-sqrtx)(sqrt(x-1)+sqrtx))dx
The denominator is now in the form
I=int(x(sqrt(x-1)+sqrtx))/((x-1)-x)dx
I=-intx(sqrt(x-1)+sqrtx)dx
Distributing, splitting up the integral and rewriting:
I=-intx(x-1)^(1/2)dx-intx^(3/2)dx
The second integral can be directly integrated using
I=-intx(x-1)^(1/2)dx-x^(5/2)/(5/2)
I=-intx(x-1)^(1/2)dx-2/5x^(5/2)
For the remaining integral, let
I=-int(u+1)u^(1/2)du-2/5x^(5/2)
Distributing
I=-intu^(3/2)du-intu^(1/2)du-2/5x^(5/2)
Using the rule from earlier:
I=-u^(5/2)/(5/2)-u^(3/2)/(3/2)-2/5x^(5/2)+C
From
I=-2/5(x-1)^(5/2)-2/3(x-1)^(3/2)-2/5x^(5/2)+C