How do you evaluate the integral int x/(sqrt(x-1)-sqrtx)?

1 Answer
Jan 29, 2017

-2/5(x-1)^(5/2)-2/3(x-1)^(3/2)-2/5x^(5/2)+C

Explanation:

Multiply first by the conjugate of the denominator to simplify the integrand.

I=int(x(sqrt(x-1)+sqrtx))/((sqrt(x-1)-sqrtx)(sqrt(x-1)+sqrtx))dx

The denominator is now in the form (a-b)(a+b)=a^2-b^2, where a=sqrt(x-1) and b=x.

I=int(x(sqrt(x-1)+sqrtx))/((x-1)-x)dx

I=-intx(sqrt(x-1)+sqrtx)dx

Distributing, splitting up the integral and rewriting:

I=-intx(x-1)^(1/2)dx-intx^(3/2)dx

The second integral can be directly integrated using intx^ndx=x^(n+1)/(n+1)+C, where n!=-1.

I=-intx(x-1)^(1/2)dx-x^(5/2)/(5/2)

I=-intx(x-1)^(1/2)dx-2/5x^(5/2)

For the remaining integral, let u=x-1. This implies that x=u+1 and du=dx.

I=-int(u+1)u^(1/2)du-2/5x^(5/2)

Distributing (u+1)u^(1/2) into separate integrals:

I=-intu^(3/2)du-intu^(1/2)du-2/5x^(5/2)

Using the rule from earlier:

I=-u^(5/2)/(5/2)-u^(3/2)/(3/2)-2/5x^(5/2)+C

From u=x-1:

I=-2/5(x-1)^(5/2)-2/3(x-1)^(3/2)-2/5x^(5/2)+C