How do you evaluate the integral int sintheta/(2-costheta)? Calculus Techniques of Integration Integration by Parts 1 Answer Andrea S. Mar 22, 2017 int (sinthetad theta)/(2-cos theta) = ln (2-costheta) + C Explanation: Substitute: x = 2-costheta dx = sintheta d theta and we have: int (sinthetad theta)/(2-cos theta) = int dx/x= ln abs x+C = ln (2-costheta) + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1816 views around the world You can reuse this answer Creative Commons License