How do you evaluate the integral ln(x24x1)?

1 Answer
Dec 28, 2016

By the laws of logarithms:

=lnx2+ln4x1dx

=lnx2dx+ln4x1dx

=2lnxdx+12ln(4x1)dx

We let u=4x1. Then du=4dx and dx=du4.

=2lnxdx+12lnudu4

=2lnxdx+18lnudu

We need to integrate the natural logarithm function by parts. Let u=lnx and dv=1dx. Then du=1xdx and v=x.

(udv)=uv(vdu)

(lnx)=xlnx(x1x)dx

(lnx)=xlnxx+C

Back to the original integral.

=2(xlnxx)+18(ulnuu)+C

=2xlnx2x+18(4x1ln(4x1)(4x1))+C

=2xlnx2x+(4x1)ln(4x1)4x+18+C

Hopefully this helps!