How do you evaluate the integral int dx/(1-cos3x)?

1 Answer
Oct 12, 2017

int dx/(1-cos3x) = -1/3cot((3x)/2)+C

Explanation:

Substitute t=3x:

int dx/(1-cos3x) = 1/3 int (dt)/(1-cost)

Use now the trigonometric identity:

cost= (1-tan^2(t/2))/(1+tan^2(t/2))

So that:

1/(1-cost) = 1/(1-(1-tan^2(t/2))/(1+tan^2(t/2)))

1/(1-cost) = (1+tan^2(t/2))/((1+tan^2(t/2))-(1-tan^2(t/2)))

1/(1-cost) = (1+tan^2(t/2))/(1+tan^2(t/2)-1+tan^2(t/2))

1/(1-cost) = (1+tan^2(t/2))/(2tan^2(t/2))

And as:

1+tan^2alpha = 1+ sin^2alpha/cos^2alpha = (cos^2alpha+sin^2alpha)/cos^2alpha = 1/cos^2alpha = sec^2alpha

we get:

int (dt)/(1-cost) = int sec^2(t/2)/(2tan^2(t/2))dt

Substitute now:

u=tan(t/2)

du=1/2sec^2(t/2)dt

and we have:

int sec^2(t/2)/(2tan^2(t/2))dt = int (du)/u^2 = -1/u+C

and undoing the substitution:

int (dt)/(1-cost) = -1/tan(t/2)+C = -cot(t/2)+C

int dx/(1-cos3x) = -1/3cot((3x)/2)+C