How do you evaluate the integral int cos(root3x)?
1 Answer
Apr 2, 2017
Explanation:
I=intcos(root3x)dx
First, let
I=intcos(t)(3t^2)dt=int3t^2cos(t)dt
Now we perform integration by parts. Let:
{(u=3t^2,=>,du=6tdt),(dv=cos(t)dt,=>,v=sin(t)):}
Then:
I=3t^2sin(t)-int6tsin(t)dt
Integration by parts again:
{(u=6t,=>,du=6dt),(dv=sin(t)dt,=>,v=-cos(t)):}
Paying attention to sign:
I=3t^2sin(t)-(6t(-cos(t))-int(-6cos(t))dt)
I=3t^2sin(t)+6tcos(t)-int6cos(t)dt
I=3t^2sin(t)+6tcos(t)-6sin(t)+C
Using
I=3root3(x^2)sin(root3x)+6root3xcos(root3x)-6sin(root3x)+C