How do you evaluate the integral int cos(root3x)?

1 Answer
Apr 2, 2017

intcos(root3x)dx=3root3(x^2)sin(root3x)+6root3xcos(root3x)-6sin(root3x)+C

Explanation:

I=intcos(root3x)dx

First, let t=root3x. This implies that t^3=x, which tells us that 3t^2dt=dx. We can substitute these in:

I=intcos(t)(3t^2)dt=int3t^2cos(t)dt

Now we perform integration by parts. Let:

{(u=3t^2,=>,du=6tdt),(dv=cos(t)dt,=>,v=sin(t)):}

Then:

I=3t^2sin(t)-int6tsin(t)dt

Integration by parts again:

{(u=6t,=>,du=6dt),(dv=sin(t)dt,=>,v=-cos(t)):}

Paying attention to sign:

I=3t^2sin(t)-(6t(-cos(t))-int(-6cos(t))dt)

I=3t^2sin(t)+6tcos(t)-int6cos(t)dt

I=3t^2sin(t)+6tcos(t)-6sin(t)+C

Using t=root3x:

I=3root3(x^2)sin(root3x)+6root3xcos(root3x)-6sin(root3x)+C