How do you evaluate the integral int arctansqrtx?
1 Answer
Jan 15, 2017
Explanation:
I=intarctan(sqrtx)dx
Let
I=intarctan(t)(2tdt)=int2tarctan(t)dt
Now use integration by parts. Let:
{(u=arctan(t)" "=>" "du=1/(t^2+1)dt),(dv=2tdt" "=>" "v=t^2):}
Then:
I=t^2arctan(t)-intt^2/(t^2+1)dt
Rewriting the integrand as
I=t^2arctan(t)-(intdt-int1/(t^2+1)dt)
Both of which are common integrals:
I=t^2arctan(t)-t+arctan(t)+C
Returning to
I=xarctan(sqrtx)-sqrtx+arctan(sqrtx)+C
I=(x+1)arctan(sqrtx)-sqrtx+C