How do you evaluate the integral int 1/(xsqrt(1-x^2))?

1 Answer
Jan 30, 2017

The answer is =-1/2ln(sqrt(1-x^2)+1)+1/2ln(|sqrt(1-x^2)-1|)+C

Explanation:

We perform this integral by substitution

Let u=sqrt(1-x^2)

u^2=1-x^2

du=(-2xdx)/(2sqrt(1-x^2))=(-xdx)/(sqrt(1-x^2))

Therefore,

intdx/(xsqrt(1-x^2))=intsqrt(1-x^2)(du)/(-x^2sqrt(1-x^2))

=int-(du)/x^2

=int(du)/(u^2-1)

Now, we perform a de composition into partial fractions

1/(u^2-1)=1/((u+1)(u-1))=A/(u+1)+B/(u-1)

=(A(u-1)+B(u+1))/((u+1)(u-1))

The denominators are the same, we can compare the numerators

1=A(u-1)+B(u+1)

Let u=-1, =>, 1=-2A, =>, A=-1/2

Let u=1, =>, 1=2B, =>, B=1/2

Therefore,

1/(u^2-1)=(-1/2)/(u+1)+(1/2)/(u-1)

So,

int(du)/(u^2-1)=-1/2int(du)/(u+1)+1/2int(du)/(u-1)

=-1/2ln(u+1)+1/2ln(u-1)

=-1/2ln(sqrt(1-x^2)+1)+1/2ln(|sqrt(1-x^2)-1|)+C