First, use this rule of exponents to eliminate the outer exponent:
#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#
#(7^color(red)(3)/4^color(red)(3))^color(blue)(-1/3) = 7^(color(red)(3) xx color(blue)(-1/3))/4^(color(red)(3) xx color(blue)(-1/3)) => 7^-1/4^-1#
Next, use these rules of exponents to eliminate the negative exponents:
#x^color(red)(a) = 1/x^color(red)(-a)# and #1/x^color(red)(a) = x^color(red)(-a)#
#7^-1/4^-1 => 7^color(red)(-1) xx 1/4^color(red)(-1) = 1/7^color(red)(- -1) xx 4^color(red)(- -1) = 1/7^1 xx 4^1 => 4^1/7^1#
Now, use this rule of exponents to complete the simplification:
#a^color(red)(1) = a#
#4^color(red)(1)/7^color(red)(1) = 4/7#