How do you differentiate y=-lnx?

1 Answer
Sep 28, 2016

(dy)/(dx)=-1/x

Explanation:

If f(x)=axxg(x), (df)/(dx)=axx(dg)/(dx)

Hence as y=-lnx=-1xxlnx

(dy)/(dx)=-1xx1/x=-1/x

For Derivative of lnx see below

d/(dx) lnx=Lt_(h->0)(ln(x+h)-lnx)/h

= Lt_(h->0)1/hln((x+h)/x)

= Lt_(h->0)ln(1+h/x)^(1/h) - assuming u=h/x

= Lt_(h->0)ln(1+u)^(1/ux)

= Lt_(u->0)ln((1+u)^(1/u))^(1/x)

= 1/xLt_(u->0)ln(1+u)^(1/u)

= 1/x xx lne

= 1/x xx1=1/x