How do you differentiate #y= ln(3x^2-4) #?

2 Answers
Aug 1, 2017

#y'-=dy/dx=(6x)/(3x^2-4)#

Explanation:

For any #y=ln[f(x)], y'-=dy/dx-=(f'(x))/(f(x))#

#y=ln(3x^2-4)#

#(3x^2-4)'=6xthereforey'=(6x)/(3x^2-4)#

Aug 1, 2017

The derivative is #=(6x)/(3x^2-4)#

Explanation:

We need

#(lnx)'=1/x#

#(x^n)'=nx^(n-1)#

Here,

we have

#y=ln(3x^2-4)#

#dy/dx=1/(3x^2-4)*(6x)=(6x)/(3x^2-4)#