How do you differentiate f(x)=xsqrt(3x-e^x) using the chain rule.?

1 Answer
May 22, 2018

f'(x)=(9x-xe^x-2e^x)/(2sqrt(3x-e^x)).

Explanation:

We have, f(x)=xsqrt(3x-e^x).

Using the Product Rule, we get,

:. f'(x)=x*d/dx{(3x-e^x)^(1/2)}+sqrt(3x-e^x)*d/dx{x}......(star).

Here, by the Chain Rule,

d/dx{(3x-e^x)^(1/2)}=1/2*(3x-e^x)^(1/2-1)*d/dx{(3x-e^x)},

=1/2*(3x-e^x)^(-1/2)*[d/dx{3x}-d/dx{e^x}],

=1/(2sqrt(3x-e^x)){3*1-e^x}.

rArrd/dx{(3x-e^x)^(1/2)}=(3-e^x)/(2sqrt(3x-e^x))......(star_1).

Utilising (star_1)" in "(star), we have,

f'(x)=x*(3-e^x)/(2sqrt(3x-e^x))+(sqrt(3x-e^x))1.

={(3x-xe^x)+2(3x-e^x)}/(2sqrt(3x-e^x)).

rArr f'(x)=(9x-xe^x-2e^x)/(2sqrt(3x-e^x)).

Enjoy Maths.!