How do you differentiate # f(x)=xe^((lnx-2)^2 # using the chain rule.? Calculus Basic Differentiation Rules Chain Rule 1 Answer Bdub Nov 1, 2016 #f'(x)=2(lnx-2)e^((lnx-2)^2)+e^((lnx-2)^2)# Explanation: #f(x)=xe^((lnx-2)^2)# Use product rule and chain rule #f=x, g=e^((lnx-2)^2)# #f'=1, g'=e^((lnx-2)^2)*2(lnx-2) 1/x# #f'(x)=fg'+gf'# #f'(x)=2(lnx-2)e^((lnx-2)^2)+e^((lnx-2)^2)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1596 views around the world You can reuse this answer Creative Commons License