How do you differentiate f(x)=tan(sqrt(x^3-1)) using the chain rule?
2 Answers
Jul 20, 2017
Explanation:
To find
Jul 20, 2017
Explanation:
"differentiate using the "color(blue)"chain rule"
"given " y=f(g(h(x)))" then"
dy/dx=f'(g(h(x))).g'(h(x)).h'(x)larr" chain rule"
y=tan(sqrt(x^3-1))
rArrf'(g(h(x)))=sec^2(sqrt(x^3-1))to(color(red)(1))
g(h(x))=(x^3-1)^(1/2)rArrg'(h(x))=1/2(x^3-1)^(-1/2)to(color(red)(2))
h(x)=x^3-1rArrh'(x)=3x^2to(color(red)(3))
"combining the product of all 3 parts gives"
rArrf'(x)=dy/dx=(3x^2sec^2(sqrt(x^3-1)))/(2sqrt(x^3-1))