How do you differentiate f(x)=sqrt((x^3+x^2)^-1+x^3) f(x)=(x3+x2)1+x3 using the chain rule?

1 Answer
Jul 13, 2018

f'(x)=(-(x^3+x^2)^(-2)(3x^2+2x)+3x^2)/sqrt((x^3+x^2)^(-1)+x^3)

Explanation:

We Need the chain rule

(f(g(x))'=f'(g(x))*g'(x)

so we get

f'(x)=1/2*((x^3+x^2)^(-1)+x^3)^(-1/2)*(-(x^3+x^2)^(-2)(3x^2+2x)+3x^2)

this is
((-(x^3+x^2)^(-2)(3x^2+2x)+3x^2))/sqrt((x^3+x^2)^(-1)+x^3)