f(x) is a composite function of three functions
color(blue)(u(x)=sqrtx and v(x)=sinx and w(x)=4x)
f(x)=u(v(w(x)))=u@(v@w)(x)
differentiation of f(x) or any composite function is determined by applying the chain rule that follows;
f'(x)=(u@(v@w)(x))'=(u(v@w(x))))'=u'(v@w(x)))xx(v@w(x))'=u'(v@w(x)))xx(v'(w(x))xxw'(x)
So,
color(red)(f'(x)=u'(v@w(x))xx(v'(w(x))xxw'(x))
u'(x)=1/(2sqrtx)
u'(v@w(x))=1/(2sqrt(v(w(x))))=1/(2sqrt(sin4x))
Then,
color(red)(u'(v@w(x))=1/(2sqrt(sin4x)))
v'(x)=cosx
v'(w(x))=cos(w(x))
Then,
color(red)(v'(w(x))=cos4x)
color(red)(w'(x)=4
color(red)(f'(x)=u'(v@w(x))xx(v'(w(x))xxw'(x))
f'(x)=1/(2sqrt(sin4x))xxcos4x xx 4
f'(x)=(4cos4x)/(2sqrt(sin4x))
Therefore,
f'(x)=(2cos4x)/sqrt(sin4x)