How do you differentiate f(x) = sqrt(sin(4x) f(x)=sin(4x) using the chain rule?

1 Answer
Nov 3, 2016

f'(x)=(2cos4x)/sqrt(sin4x)

Explanation:

f(x) is a composite function of three functions

color(blue)(u(x)=sqrtx and v(x)=sinx and w(x)=4x)

f(x)=u(v(w(x)))=u@(v@w)(x)

differentiation of f(x) or any composite function is determined by applying the chain rule that follows;

f'(x)=(u@(v@w)(x))'=(u(v@w(x))))'=u'(v@w(x)))xx(v@w(x))'=u'(v@w(x)))xx(v'(w(x))xxw'(x)

So,
color(red)(f'(x)=u'(v@w(x))xx(v'(w(x))xxw'(x))

u'(x)=1/(2sqrtx)
u'(v@w(x))=1/(2sqrt(v(w(x))))=1/(2sqrt(sin4x))
Then,
color(red)(u'(v@w(x))=1/(2sqrt(sin4x)))

v'(x)=cosx
v'(w(x))=cos(w(x))
Then,
color(red)(v'(w(x))=cos4x)

color(red)(w'(x)=4

color(red)(f'(x)=u'(v@w(x))xx(v'(w(x))xxw'(x))
f'(x)=1/(2sqrt(sin4x))xxcos4x xx 4
f'(x)=(4cos4x)/(2sqrt(sin4x))

Therefore,
f'(x)=(2cos4x)/sqrt(sin4x)