How do you differentiate f(x) = sqrt (3^x) / x^2?

1 Answer
Jun 8, 2017

f'(x)={sqrt(3^x)(xln3-4)}/(2x^3), or,

f'(x)={(sqrt(3^x))(ln(3^x)-4)}/(2x^3).

Explanation:

f(x)=sqrt(3^x)/x^2=(3^x)^(1/2)/x^2=(3^(1/2))^x*x^-2=(sqrt3)^x*x^-2.

Now, we know that,

(1): F(x)=G(x)H(x) rArr F'(x)=G(x)H'(x)+G'(x)H(x).

(2): (a^x)'=a^xlna.

(3) : (x^n)'=nx^(n-1).

:. f'(x)=(sqrt3)^x(x^-2)'+(x^-2)((sqrt3)^x)'.

=((sqrt3)^x(-2x^(-2-1))+(x^-2){(sqrt3)^xlnsqrt3}

=-2x^-3sqrt(3^x)+{sqrt(3^x)ln3}/(2x^2)

=-{2sqrt(3^x)}/x^3+{sqrt(3^x)ln3}/(2x^2)

rArr f'(x)={sqrt(3^x)(xln3-4)}/(2x^3), or,

f'(x)={(sqrt(3^x))(ln(3^x)-4)}/(2x^3).

Enjoy Maths.!