How do you differentiate # f(x)=sin(e^((lnx-2)^2 ))# using the chain rule.? Calculus Basic Differentiation Rules Chain Rule 1 Answer Bdub Apr 14, 2016 #f'(x)=cos(e^((lnx-2)^2)) xxe^((lnx-2)^2) xx 2(lnx-2) xx 1/x# Explanation: #f(x)=sin x, g(x)= e^x, h(x)=x^2, r(x)=lnx-2# #f(g(h(r(x))))=f'(g(h(r(x))))xxg'(h(r(x)))^##h'(r(x))xxr'(x)# #f'(x)=cos(e^((lnx-2)^2)) xxe^((lnx-2)^2) xx 2(lnx-2) xx 1/x# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1667 views around the world You can reuse this answer Creative Commons License