How do you differentiate f(x)=sin(cos(tanx)) using the chain rule?

1 Answer
Dec 20, 2015

f'(x)=-sec^2xsin(tanx)cos(cos(tanx))

Explanation:

The first major issue is the sin function. According to the chain rule,

d/dx[sinu]=u'cosu, so

f'(x)=cos(cos(tanx))*d/dx[cos(tanx)]

Now to differentiate cos(tanx), know that

d/dx[cosu]=-u'sinu

Thus,

d/dx[cos(tanx)]=-d/dx[tanx]*sin(tanx)

Also recall that d/dx[tanx]=sec^2x, so

d/dx[cos(tanx)]=-sec^2xsin(tanx)

Plug this back into the f'(x) equation.

f'(x)=-sec^2xsin(tanx)cos(cos(tanx))