How do you differentiate f(x)=sec(e^(sqrtx-4) ) using the chain rule?

1 Answer
Jan 23, 2016

f'(x)=(e^(sqrtx-4)sec(e^(sqrtx-4))tan(e^(sqrtx-4)))/(2sqrtx)

Explanation:

The chain rule states that d/dx[sec(u)]=u'*sec(u)tan(u), and here u=e^(sqrtx-4).

f'(x)=d/dx[e^(sqrtx-4)]*sec(e^(sqrtx-4))tan(e^(sqrtx-4))

To find this derivative, use the rule that d/dx[e^u]=u'*e^u, and this time u=sqrtx-4.

f'(x)=d/dx[sqrtx-4]*e^(sqrtx-4)sec(e^(sqrtx-4))tan(e^(sqrtx-4))

To find d/dx[sqrtx-4], use the power rule, in that d/dx[x^(1/2)-4]=1/2x^(-1/2)=1/(2sqrtx). This gives

f'(x)=(e^(sqrtx-4)sec(e^(sqrtx-4))tan(e^(sqrtx-4)))/(2sqrtx)