How do you differentiate #f(x)=sec(e^(sqrtx-4) ) # using the chain rule?
1 Answer
Jan 23, 2016
Explanation:
The chain rule states that
#f'(x)=d/dx[e^(sqrtx-4)]*sec(e^(sqrtx-4))tan(e^(sqrtx-4))#
To find this derivative, use the rule that
#f'(x)=d/dx[sqrtx-4]*e^(sqrtx-4)sec(e^(sqrtx-4))tan(e^(sqrtx-4))#
To find
#f'(x)=(e^(sqrtx-4)sec(e^(sqrtx-4))tan(e^(sqrtx-4)))/(2sqrtx)#