How do you differentiate f(x)=sec^2(e^(x^4) ) using the chain rule?

1 Answer
Mar 14, 2018

f^'(x)=8x^3(e^(x^(4)))sec^2(e^(x^(4)))tan(e^(x^(4)))

Explanation:

Chain Rule:
color(red)(d/(dx)(g@f(x))=g^'(f(x))*f^'(x))
f(x)=sec^2(e^(x^(4)))=[color(red)(sec(e^(x^(4))))]^2
f^'(x)=2sec(e^(x^(4)))*d/(dx)color(red)((seccolor(blue)((e^(x^(4)))))
f^'(x)=2sec(e^(x^(4)))sec(e^(x^(4)))tan(e^(x^(4)))d/(dx)color(blue)((e^(x^4))
f^'(x)=2sec(e^(x^(4)))sec(e^(x^(4)))tan(e^(x^(4)))(e^(x^(4)))d/(dx)(color(red)(x^4))
f^'(x)=2sec(e^(x^(4)))sec(e^(x^(4)))tan(e^(x^(4)))(e^(x^(4)))(4x^3)
f^'(x)=8x^3(e^(x^(4)))sec(e^(x^(4)))sec(e^(x^(4)))tan(e^(x^(4)))
f^'(x)=8x^3(e^(x^(4)))sec^2(e^(x^(4)))tan(e^(x^(4)))