How do you differentiate #f(x)=sec^2(3x ) # using the chain rule?
1 Answer
Apr 1, 2016
Explanation:
differentiating using the
#color(blue)" chain rule " #
#d/dx [f(g(x) ] = f'(g(x).g'(x) # and the standard derivative :
#d/dx(secx) = secx.tanx #
#" ----------------------------------------------------------"# f(g(x) =
# [sec(3x)]^2 rArr f'(g(x)) = 2sec(3x)# and g(x) =
#sec(3x) rArr g'(x) = sec(3x).tan(3x). d/dx(3x) #
# = 3sec(3x).tan(3x)#
#" ------------------------------------------------------"#
#rArr f'(x) = 2sec(3x). 3sec(3x).tan(3x)#
# = 6 sec^2(3x).tan(3x)#