How do you differentiate f(x)=sec(13x24) using the chain rule?

1 Answer
Jun 26, 2018

dydx=3x(3x24)32sec(13x24)tan(13x24)

Explanation:

Let ,

y=secu , u=1vandv=3x24

dydu=secutanu, dudv=1v2and

dvdx=123x24ddx(3x24)=6x23x24=3x3x24

Using chain rule:

dydx=dydududv.dvdx

dydx=secutanu(1v2)3x3x24,where,u=1v

dydx=sec(1v)tan(1v)(1v2)3x3x24

Putting , v=3x24

dydx=sec(13x24)tan(13x24)13x243x3x24

dydx=3x(3x24)32sec(13x24)tan(13x24)