How do you differentiate f(x) = ln((1-x^2)^(-1/2) )? using the chain rule?

1 Answer
Dec 10, 2017

f'(x)=x(1-x^2)^(-1)

Explanation:

If f(x)=ln(g(x))
Then f'(x)=(g'(x))/(g(x))

g(x)=(1-x^2)^(-1/2)=(h(x))^n
g'(x)=n* h'(x)* h(x)^(n-1)
h'(x)=-2x
g'(x)=-1/2*-2x*(1-x^2)^(-3/2)=x(1-x^2)^(-3/2)

f'(x)=(x(1-x^2)^(-3/2))/((1-x^2)^(-1/2))=(x(1-x^2)^(1/2))/((1-x^2)^(3/2))=x/((1-x^2)^(2/2))=x/((1-x^2))=x(1-x^2)^(-1)