How do you differentiate f(x)=e^(cotsqrtx) using the chain rule.?

1 Answer
Jan 9, 2016

f'(x)=(-csc^2sqrtx*e^cotsqrtx)/(2sqrtx)

Explanation:

First Issue: The e power. According to the chain rule, d/dx(e^u)=e^u*u'. Thus,

f'(x)=e^cotsqrtx*d/dx(cotsqrtx)

Second Issue: the cotangent function. Again through the chain rule, d/dx(cotu)=-csc^2u*u'. Thus,

f'(x)=e^cotsqrtx*-csc^2sqrtx*d/dx(sqrtx)

Now, to differentiate sqrtx, treat it as x^(1/2). Thus, its derivative is 1/2x^(-1/2) or 1/(2sqrtx).

f'(x)=(-csc^2sqrtx*e^cotsqrtx)/(2sqrtx)