How do you differentiate #f(x)=csc(2x -4) # using the chain rule?
1 Answer
Jan 8, 2016
Explanation:
According to the chain rule,
#d/dx(csc(u))=-csc(u)cot(u)*u'#
Thus we have
#f'(x)=d/dx(csc(2x-4))=-csc(2x-4)cot(2x-4)*d/dx(2x-4)#
#=-2csc(2x-4)cot(2x-4)#