How do you differentiate f(x)=cot(e^(1/x)) using the chain rule?

1 Answer

f'(x)=-\frac{e^{1/x}cosec^2(e^{1/x})}{x^2}

Explanation:

Given function:

f(x)=\cot(e^{1/x})

differentiating above function w.r.t x using chain rule as follows

\frac{d}{dx}f(x)=\frac{d}{dx}\cot (e^{1/x})

f'(x)=-cosec^2(e^{1/x})\frac{d}{dx}(e^{1/x})

=-cosec^2(e^{1/x})\cdot e^{1/x}\frac{d}{dx}(1/x)

=-cosec^2(e^{1/x})\cdot e^{1/x}(-1/x^2)

=-\frac{e^{1/x}cosec^2(e^{1/x})}{x^2}