How do you differentiate #f(x)=cos(e^(3x^3-x)) # using the chain rule?
1 Answer
Jun 21, 2016
Explanation:
Using the sum rule and the chain rule, along with the following derivatives:
-
#d/dxcos(x) = -sin(x)# -
#d/dxe^x = e^x# -
#d/dx x^n = nx^(n-1)#
we have
#=-sin(e^(3x^3-x))(d/dxe^(3x^3-x))#
#=-sin(e^(3x^3-x))e^(3x^3-x)(d/dx(3x^3-x))#
#=-sin(e^(3x^3-x))e^(3x^3-x)((d/dx3x^3)-(d/dxx))#
#=-sin(e^(3x^3-x))e^(3x^3-x)(9x^2-1)#