How do you differentiate f(x)=cos(e^(3x^3-x)) f(x)=cos(e3x3−x) using the chain rule?
1 Answer
Jun 21, 2016
Explanation:
Using the sum rule and the chain rule, along with the following derivatives:
-
d/dxcos(x) = -sin(x) -
d/dxe^x = e^x -
d/dx x^n = nx^(n-1)
we have
=-sin(e^(3x^3-x))(d/dxe^(3x^3-x))
=-sin(e^(3x^3-x))e^(3x^3-x)(d/dx(3x^3-x))
=-sin(e^(3x^3-x))e^(3x^3-x)((d/dx3x^3)-(d/dxx))
=-sin(e^(3x^3-x))e^(3x^3-x)(9x^2-1)