How do you differentiate f(x)=4xln(3x+2) using the chain rule?

1 Answer
Nov 1, 2015

4(ln(3x+2)+x13x+23)

Explanation:

ddx[4xln(3x+2)] // constant out

=4ddx[xln(3x+2)] //product rule

=4(ddx[x]ln(3x+2)+xddx[ln(3x+2)]) // u = 3x + 2

=4(ln(3x+2)+xddu[lnu]ddx[u])

=4(ln(3x+2)+x1u3)