How do you differentiate #f(x)=4/(x+1)^2 # using the chain rule?
1 Answer
Oct 30, 2016
Explanation:
Express
#f(x)=4(x+1)^-2# differentiate using the
#color(blue)"chain rule"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))# let
#u=x+1rArr(du)/(dx)=1# and
#y=4u^-2rArr(dy)/(du)=-8u^-3# substitute these values into
#dy/dx# writing u in terms of x.
#dy/dx=-8u^-3 xx1=-8/(x+1)^3#