How do you differentiate f(x)=-2e^(x^2cosx f(x)=2ex2cosx using the chain rule?

1 Answer

dy/dx=2xe^(x^2cosx)(xsinx-2cosx)dydx=2xex2cosx(xsinx2cosx)

Explanation:

f(x)=-2e^(x^2cosx)f(x)=2ex2cosx
Let
y=f(x)y=f(x)
Then
y=-2e^(x^2cosx)y=2ex2cosx
Let
u=e^(x^2cosx)u=ex2cosx
Taking logarithms
lnu=x^2cosxlnu=x2cosx
Differentiating wrt x
1/u(du)/dx=x^2(-sinx)+cosx(2x)1ududx=x2(sinx)+cosx(2x)
1/u(du)/dx=-x^2sinx+2xcosx1ududx=x2sinx+2xcosx
(du)/dx=u(-x^2sinx+2xcosx)dudx=u(x2sinx+2xcosx)
y=-2e^(x^2cosx)y=2ex2cosx
y=-2uy=2u
Differentiating
dy/dx=-2(du)/dxdydx=2dudx
(du)/dx=u(-x^2sinx+2xcosx)dudx=u(x2sinx+2xcosx)
dy/dx=-2(u(-x^2sinx+2xcosx))dydx=2(u(x2sinx+2xcosx))
dy/dx=2u(x^2sinx-2xcosx)dydx=2u(x2sinx2xcosx)
u=e^(x^2cosx)u=ex2cosx
dy/dx=2e^(x^2cosx)(x^2sinx-2xcosx)dydx=2ex2cosx(x2sinx2xcosx)
dy/dx=2xe^(x^2cosx)(xsinx-2cosx)dydx=2xex2cosx(xsinx2cosx)