f(x)=-2e^(x^2cosx)f(x)=−2ex2cosx
Let
y=f(x)y=f(x)
Then
y=-2e^(x^2cosx)y=−2ex2cosx
Let
u=e^(x^2cosx)u=ex2cosx
Taking logarithms
lnu=x^2cosxlnu=x2cosx
Differentiating wrt x
1/u(du)/dx=x^2(-sinx)+cosx(2x)1ududx=x2(−sinx)+cosx(2x)
1/u(du)/dx=-x^2sinx+2xcosx1ududx=−x2sinx+2xcosx
(du)/dx=u(-x^2sinx+2xcosx)dudx=u(−x2sinx+2xcosx)
y=-2e^(x^2cosx)y=−2ex2cosx
y=-2uy=−2u
Differentiating
dy/dx=-2(du)/dxdydx=−2dudx
(du)/dx=u(-x^2sinx+2xcosx)dudx=u(−x2sinx+2xcosx)
dy/dx=-2(u(-x^2sinx+2xcosx))dydx=−2(u(−x2sinx+2xcosx))
dy/dx=2u(x^2sinx-2xcosx)dydx=2u(x2sinx−2xcosx)
u=e^(x^2cosx)u=ex2cosx
dy/dx=2e^(x^2cosx)(x^2sinx-2xcosx)dydx=2ex2cosx(x2sinx−2xcosx)
dy/dx=2xe^(x^2cosx)(xsinx-2cosx)dydx=2xex2cosx(xsinx−2cosx)