How do you differentiate #f(x)= 2 / (e^x + e^-x)^3#? Calculus Basic Differentiation Rules Chain Rule 1 Answer Eddie Oct 4, 2016 #= -6 (e^x - e^(-x) )/ ( (e^x + e^-x)^4 )# Explanation: #f(x)= 2 / (e^x + e^-x)^3 # #= 2 / (2(cosh x))^3 = 1/4 sech^3 x# #f'(x) = 3 (1/4) sech^2 x (- sech x) tanh x# #= -3/4 sech^3 x tanh x# #= -3/4 1 / ((e^x + e^-x)/2)^3 * (e^x - e^(-x))/(e^x + e^(-x))# #= -6 (e^x - e^(-x) )/ ( (e^x + e^-x)^4 )# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1588 views around the world You can reuse this answer Creative Commons License