How do you differentiate # f(x)=1/sqrt((7-2x^3)# using the chain rule.?
1 Answer
Apr 14, 2016
Explanation:
Using the
#color(blue)" chain rule "#
#d/dx [ f(g(x)) ] = f'(g(x)) . g'(x) # rewrite
# 1/(sqrt(7 - 2x^3)) = (7 - 2x^3)^(-1/2) #
#"-----------------------------------------"# here f(g(x))
#= (7 - 2x^3)^(-1/2)#
#rArr f'(g(x)) = -1/2(7 - 2x^3)^(-3/2) # and
# g(x) = 7 - 2x^3 rArr g'(x) = -6x^2 #
#"----------------------------------------------------------------"#
#rArr f'(x) = -1/2(7 - 2x^3)^(-3/2) xx-6x^2 #
# = (3x^2)/(7 - 2x^3)^(3/2) #