Here ,
f(x)=y=1/cossqrtlnx
Let ,
y=1/u , u=cosv , v=sqrtw , w=lnx
So,
(dy)/(du)=-1/u^2 , (du)/(dv)=-sinv ,
(dv)/(dw)=1/(2sqrtw)and(dw)/(dx)=1/x
Using Chain Rule :
(dy)/(dx)=(dy)/(du)(du)/(dv)(dv)/(dw)(dw)/(dx)
:.(dy)/(dx)=(-1/u^2)(-sinv)(1/(2sqrtw))(1/x)
:.(dy)/(dx)=1/cos^2v*sinv(1/(2sqrtw))(1/x)to[becauseu=cosv]
=>(dy)/(dx)=sin(sqrtw)/cos^2(sqrtw)*1/(2sqrtw)
(1/x)to[becausev=sqrtw]
=>(dy)/(dx)=sin(sqrt(lnx))/cos^2(sqrt(lnx))1/(2sqrt(lnx))
(1/x)to[becausew=lnx]
Hence,
f'(x)=1/(2xsqrt(lnx))sin(sqrtlnx)/cos^2(sqrt(lnx)) or
f'(x)=1/(2xsqrt(lnx))sec(sqrt(lnx))tan(sqrt(lnx))