#f(x) = 1 / cos (e^arccos(ln x))#
#f'(x) = (d/(dx)cos(e^arccos(ln x)) ) / cos ^2 (e^arccos (ln x))#
(Multiply and divide by #cos(e^arccos(ln x))#
Applying chain rule,
#=> (- sin (e^arccos(ln x)) *( (d/(dx)) (e^arccos (ln x)))) / cos^2 (e^arccos(ln x))#
#=> (-sin (e^arccos(ln x)) * e^arccos(ln x) * (d/(dx)) arccos (ln x)) / cos^2 (e^arccos(ln x))#
#=> (-1/sqrt(1 - ln^2 x) * (d/(dx))(ln x) * sin (e^arccos(ln x)) * e^arccos(ln x)) / cos^2 (e^arccos(ln x))#
#=>- (sin (e^arccos(ln x)) * e^arccos(ln x)) /( x * sqrt(1 - ln^2 x)* cos^2 (e^arccos(ln x))#
#=>- (tan (e^arccos(ln x))* (sec (e^arccos(ln x))* e^arccos(ln x))) /( x * sqrt(1 - ln^2 x))#