How do you differentiate #arcsin(csc(4x)) )# using the chain rule?
↳Redirected from
"How can I construct vector diagrams?"
#d/dx(sin^-1 csc (4x))=4*sec 4x*sqrt(1-csc^2 4x)#
We use the formula
#d/dx(sin^-1 u)=(1/sqrt(1-u^2))du#
#d/dx(sin^-1 csc (4x))=(1/sqrt(1-(csc 4x)^2))d/dx(csc 4x)#
#d/dx(sin^-1 csc (4x))=(1/sqrt(1-csc^2 4x))*(-csc 4x*cot 4x)*d/dx(4x)#
#d/dx(sin^-1 csc (4x))=((-csc 4x*cot 4x)/sqrt(1-csc^2 4x))*(4)#
#d/dx(sin^-1 csc (4x))=((-4*csc 4x*cot 4x)/sqrt(1-csc^2 4x))*(sqrt(1-csc^2 4x)/(sqrt(1-csc^2 4x)))#
#d/dx(sin^-1 csc (4x))=((-4*csc 4x*cot 4x*sqrt(1-csc^2 4x))/(-cot^2 4x))#
#d/dx(sin^-1 csc (4x))=4*sec 4x*sqrt(1-csc^2 4x)#
God bless....I hope the explanation is useful.