How do I evaluate int (arcsin x)/sqrt (1+x) dx?

1 Answer
Feb 17, 2015

We will integrate this using integration by parts.

Recall that uv-intvdu

Let u=arcsin(x) and dv=dx/sqrt(1+x)

Differentiating u=arcsinx we have
du=1/sqrt(1-x^2)dx

Integrate dv=dx/sqrt(1+x)

intdv=intdx/sqrt(1+x)

v=2sqrt(1+x)

Therefore,

arcsin(x)(2sqrt(1+x))-int2sqrt(1+x)(1/sqrt(1-x^2))dx

Some rewriting and factor 1-x^2

2arcsin(x)sqrt(1+x)- 2intsqrt(1+x)/sqrt((1+x)(1-x))dx

2arcsin(x)sqrt(1+x)-2intsqrt(1+x)/(sqrt(1+x)sqrt(1-x))dx

2arcsin(x)sqrt(1+x)-2int1/sqrt(1-x)dx

Finally, we integrate

2arcsin(x)sqrt(1+x)+4sqrt(1-x)+C