How do I evaluate int_0^5(2 e^x + 5cos(x)) dx?

1 Answer
Feb 20, 2015

Hello !

Answer. 2e^5 + 5sin(5) - 2.

Explanation Take antiderivative of x\mapsto e^x and x\mapsto cos(x) and use the linearity of integral :

\int_0^5 (2e^x + 5cos(x)) dx = [2e^x + 5sin(x)]_0^5

\int_0^5 (2e^x + 5cos(x)) dx = (2e^5 + 5sin(5)) - (2e^0 + 5sin(0))

\int_0^5 (2e^x + 5cos(x)) dx = 2e^5 + 5sin(5) - 2.