Question #61a6c

1 Answer
Apr 12, 2017

Always let "u" equal the polynomial because differentiating it makes the resulting integral simpler

Explanation:

Integration by parts:

intudv = uv-intvdu

let u = x^2+2x+1, then du = 2x+2dx
let dv=e^(7x)dx, then v = 1/7e^(7x)

int(x^2+2x+1)e^(7x)dx= 1/7(x^2+2x+1)e^(7x)-1/7int(2x+2)e^(7x)dx

Repeat the integration by parts:

int(x^2+2x+1)e^(7x)dx= 1/7(x^2+2x+1)e^(7x)-1/7int(2x+2)e^(7x)dx

let u = 1/7(2x+2), then du=2dx
let dv=e^(7x)dx, then v = 1/7e^(7x)

int(x^2+2x+1)e^(7x)dx= 1/7(x^2+2x+1)e^(7x)-1/49(2x+2)e^(7x)+2/49inte^(7x)dx

int(x^2+2x+1)e^(7x)dx= 1/7(x^2+2x+1)e^(7x)-1/49(2x+2)e^(7x)+2/343e^(7x)+C