Question #4f6e6
1 Answer
Feb 23, 2017
Explanation:
Split up the integral:
#I=int(x^6-1)/(1+x^2)dx=intx^6/(1+x^2)dx-intdx/(1+x^2)#
The second is the arctangent integral:
#I=intx^6/(1+x^2)dx-arctan(x)#
Perform long division on what remains, or write the numerator as follows for the same result:
#I=int(x^4(1+x^2)-x^2(1+x^2)+(x^2+1)-1)/(1+x^2)dx-arctan(x)#
Dividing:
#I=intx^4dx-intx^2dx+intdx-intdx/(1+x^2)-arctan(x)#
#I=1/5x^5-1/3x^3+x-2arctan(x)+C#