For #DeltaABC#
we have #A+B+C=pi#
So #cot(A+B)=cot(pi-C)#
#=>(cotAcotB-1)/(cotB+cotA)=-cotC#
#=>cotAcotB+cotBcotC+cotCcotA=1" "color(red)([1])#
Now it is given
#cotA+cotB+cotC=sqrt3#
Squaring both sides we get
#cot^2A+cot^2B+cot^2C+2(cotAcotB+cotBcotC+cotCcotA)=3" "color(red)([2])#
Now subtracting thrice of [1] from [2] we get
#cot^2A+cot^2B+cot^2C-(cotAcotB+cotBcotC+cotCcotA)=0#
#=>2cot^2A+2cot^2B+2cot^2C-2cotAcotB-2cotBcotC-2cotCcotA=0#
#=>(cotA-cotB)^2+(cotB-cotC)^2+(cotC-cotA)^2=0#
Now sum of three squared terms each of which is positive being zero each will be equal to zero.
Hence
#cotA=cotB=cotC#
#=>A=B=C#
This implies that #DeltaABC# is equilateral.