The given equation of the parabola
y=4ax^2
=>x^2=4xx1/(16a)y
Hence the parabola is symmetric about y-axis i,e its axis is Y-axis .
The co-ordinates of its vertex is =>(0,0).
The co-ordinates of its focus ( F)=>(0,1/(16a))
The equation of its directrix,=>y=-1/(16a)
Let the co-ordinates of any point P on it in parametric form be ((2t)/(16a),t^2/(16a)),where t is the parameter.
Now slope of the tangent at P
((dy)/(dx))_(((2t)/(16a),t^2/(16a))) =4axx2xx(2t)/(16a)=t
So slope of the normal at P =-1/t
So equation of the normal at P
y-t^2/(16a)=-1/txx(x-(2t)/(16a))
Putting ,y=-1/(16a) in the equation of the normal we get the X=coordinate of the point of intersection (Q) of the normal with the directrix
-1/(16a)-t^2/(16a)=-1/txx(x-(2t)/(16a))
=>-1/(16a)-t^2/(16a)=-x/t+2/(16a)
=>x/t=t^2/(16a)+3/(16a)
=>x=t^3/(16a)+(3t)/(16a)
So co-ordinates of Q is (t^3/(16a)+(3t)/(16a),-1/(16a))
So
PQ^2=[(t^3/(16a)+(3t)/(16a)-(2t)/(16a))^2+(t^2/(16a)+1/(16a))^2]
=1/(16a)^2[(t^3+t)^2+(t^2+1 )^2]
=1/(16a)^2[t^2(t^2+t)^2+(t^2+1 )^2]
=1/(16a)^2[(t^2+t)^2(t^2+1 )]
=1/(16a)^2[(t^2+t)^3]
No
FP^2=((2t)/(16a))^2+(t^2/(16a)-1/(16a))^2=(t^2+1)^2/(16a)^2
=>FP^3=(t^2+1)^3/(16a)^3
Hence
(PQ^2)/(FP^3)=16a
=>PQ^2=16aFP^3