Question #e09ab

1 Answer
Jun 22, 2017

1/2secxtanx-cscx+3/2lnabs(secx+tanx)+C

Explanation:

I=intcsc^2xsec^3xdx

Use csc^2x=1+cot^2x:

I=int(1+cot^2x)sec^3xdx=intsec^3xdx+intcsc^2xsecxdx

Again use csc^2x=cot^2x+1:

I=intsec^3xdx+int(cot^2x+1)secxdx

color(white)I=intsec^3xdx+intsecxdx+intcotxcscxdx

The two rightmost integrals are standard:

I=intsec^3xdx+lnabs(secx+tanx)-cscx

Let J=intsec^3xdx. To solve this, begin with integration by parts, letting:

u=secx" "=>" "du=secxtanxdx
dv=sec^2xdx" "=>" "v=tanx

Then:

J=secxtanx-intsecxtan^2xdx

Using tan^2x=sec^2x-1:

J=secxtanx-intsecx(sec^2x-1)dx

color(white)J=secxtanx-intsec^3xdx+intsecxdx

The integral of secx is common. We can add J to both sides since its reappeared on the right-hand side:

2J=secxtanx+lnabs(secx+tanx)

J=1/2secxtanx+1/2lnabs(secx+tanx)

Then the original integral equals:

I=(1/2secxtanx+1/2lnabs(secx+tanx))+lnabs(secx+tanx)-cscx

color(white)I=color(blue)(1/2secxtanx-cscx+3/2lnabs(secx+tanx)+C