I=intcsc^2xsec^3xdx
Use csc^2x=1+cot^2x:
I=int(1+cot^2x)sec^3xdx=intsec^3xdx+intcsc^2xsecxdx
Again use csc^2x=cot^2x+1:
I=intsec^3xdx+int(cot^2x+1)secxdx
color(white)I=intsec^3xdx+intsecxdx+intcotxcscxdx
The two rightmost integrals are standard:
I=intsec^3xdx+lnabs(secx+tanx)-cscx
Let J=intsec^3xdx. To solve this, begin with integration by parts, letting:
u=secx" "=>" "du=secxtanxdx
dv=sec^2xdx" "=>" "v=tanx
Then:
J=secxtanx-intsecxtan^2xdx
Using tan^2x=sec^2x-1:
J=secxtanx-intsecx(sec^2x-1)dx
color(white)J=secxtanx-intsec^3xdx+intsecxdx
The integral of secx is common. We can add J to both sides since its reappeared on the right-hand side:
2J=secxtanx+lnabs(secx+tanx)
J=1/2secxtanx+1/2lnabs(secx+tanx)
Then the original integral equals:
I=(1/2secxtanx+1/2lnabs(secx+tanx))+lnabs(secx+tanx)-cscx
color(white)I=color(blue)(1/2secxtanx-cscx+3/2lnabs(secx+tanx)+C