How do you simplify the following?
-
#(1-sin^2 x)/(sin x + 1)#
-
#(tan x)(1-sin^2 x)#
-
#(1-sin^2 x)/(sin x + 1)# -
#(tan x)(1-sin^2 x)#
1 Answer
Mar 26, 2016
-
#(1-sin^2 x)/(sin x + 1) = 1 - sin x# when#x != (3pi)/2 + 2kpi# -
#(tan x)(1 - sin^2 x) = 1/2 sin 2x# when#x != kpi#
Explanation:
Example 1.
Use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#(1-sin^2 x)/(sin x + 1) = ((1-sin x)color(red)(cancel(color(black)((1+sin x)))))/color(red)(cancel(color(black)((1+sin x)))) = 1 - sin x#
with exclusion
Example 2.
Use the following:
#sin^2 x + cos^2 x = 1# in the form#1 - sin^2 x = cos^2 x#
#tan x = (sin x)/(cos x)#
#sin 2x = 2 sin x cos x#
as follows:
#(tan x)(1 - sin^2 x) =(sin x)/(cos x)*cos^2 x = sin x cos x = 1/2 sin 2x#
with exclusion