How do you simplify the following?

  1. #(1-sin^2 x)/(sin x + 1)#

  2. #(tan x)(1-sin^2 x)#

1 Answer
Mar 26, 2016
  1. #(1-sin^2 x)/(sin x + 1) = 1 - sin x# when #x != (3pi)/2 + 2kpi#

  2. #(tan x)(1 - sin^2 x) = 1/2 sin 2x# when #x != kpi#

Explanation:

Example 1.

Use the difference of squares identity:

#a^2-b^2 = (a-b)(a+b)#

with #a = 1#, #b = sin x# as follows:

#(1-sin^2 x)/(sin x + 1) = ((1-sin x)color(red)(cancel(color(black)((1+sin x)))))/color(red)(cancel(color(black)((1+sin x)))) = 1 - sin x#

with exclusion #sin x != -1# (i.e. #x != (3pi)/2+2kpi#)

Example 2.

Use the following:

#sin^2 x + cos^2 x = 1# in the form #1 - sin^2 x = cos^2 x#

#tan x = (sin x)/(cos x)#

#sin 2x = 2 sin x cos x#

as follows:

#(tan x)(1 - sin^2 x) =(sin x)/(cos x)*cos^2 x = sin x cos x = 1/2 sin 2x#

with exclusion #cos x != 0#, i.e. #x != kpi#